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Abstract

The solvability condition is investigated for the method of multiple scales applied to gyroscopic continua. The general

framework of the multi-scale analysis is proposed for a linear gyroscopic continuous system under small nonlinear time-

dependent disturbances. The solvability condition is derived from the properties of the systems. The condition holds only

for appropriate boundary conditions. The appropriateness of the boundary conditions can be examined for unperturbed

linear systems. An example is presented to highlight the requirements on the boundary conditions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Gyroscopic continua are translating or rotating structures with distributed mass and elasticity or
viscoelasticity. Gyroscopic continua include translating and rotating strings, beams, cables, membranes,
plates, and shells. A skew symmetric term, the gyroscopic term, in the governing equation results in some
particular characteristics of gyroscopic continua.

Many investigators addressed dynamic analysis on gyroscopic continua. Hughes and D’Eleuterio [1]
developed a modal analysis approach. Wickert and Mote [2] proposed a modal analysis solution to transverse
vibration of moving strings and beams under arbitrary excitations and initial conditions. Based on the transfer
function formulation, Yang [3] proved some eigenvalue inclusion theorems for gyroscopic continua under
pointwise, nondissipative constraints. Renshaw and Mote [4] presented a general observation to predict
divergence instability for gyroscopic continua near vanishing eigenvalues. Wickert [5] calculated the first-order
approximation for transient vibration of gyroscopic continua with unsteady superposed motion via the
asymptotic method of Krylov, Bogoliubov, and Mitropolsky. Parker [6] presented a perturbation analysis to
determine approximate eigenvalue loci and stability conditions in the vicinity of critical speeds and zero speed.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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All above mentioned investigations treated linear gyroscopic continua. Recently, much attention was paid
to nonlinear gyroscopic continua. As the diversity of the nonlinear problem, there have had no general results
for nonlinear gyroscopic continua. Instead, some specific nonlinear gyroscopic continuous systems were
studied. Among other approaches, the method of multiple scales is a powerful tool that can be directly applied
to nonlinear partial differential equations without discretization. The direct method of multiple scales was
used to analyze two special classes of nonlinear gyroscopic continua, axially moving strings [7–11] and beams
[12–14]. In addition to nonlinear vibration, the method of multiple scales was also applied to investigate the
stability of linear parametric vibration of axially accelerating strings [15] and beams [16–20]. The key issue in
the applications of the method of multiple scales is to derive the solvability condition, which can be utilized to
determine stability conditions in linear parametric vibration, nonlinear frequencies in free vibration, and
steady-state responses in forced or parametric vibrations.

The authors will develop the solvability condition for a general gyroscopic continuous system with weak
nonlinear time-dependent disturbance. The conclusion is true only for appropriate boundary conditions, while
the boundary conditions can be checked only for the unperturbed linear part of the system. An axially moving
beam on an elastic foundation with hybrid ends is treated to demonstrate the examination of the boundary
conditions.
2. Analysis via the method of multiple scales

Consider a gyroscopic continuous system with a weak disturbance

Mv;tt þ Gv;t þ Kv ¼ �Nðx; tÞ, (1)

where v(x,t) is the generalized displacement of the system at spatial coordinate x and time t, (v),t denotes
partial derivative of (v) with respect to t, M, G and K represent mass, gyroscopic and stiffness operators
respectively, e stands for a small dimensionless parameter, and N(x,t) expresses a nonlinear function of x and t

that may explicitly contain v and its spatial and temporal partial derivatives as well as its integral over a spatial
region or a temporal interval. N(x,t) is periodic in time with the period 2p/o. M, G and K are linear, time-
independent, spatial differential operators. Introduce an inner product

f ; g
� �

¼

Z
E

f ðxÞḡðxÞdx, (2)

for complex functions f and g defined in a bounded, open region E in Rn, n ¼ 1,2, or 3, where the overbar
denotes the complex conjugate. M and K are symmetric in the sense

Mf ; g
� �

¼ f ;Mg
� �

; Kf ; g
� �

¼ f ;Kg
� �

, (3)

and G is skew symmetric in the sense

Gf ; g
� �

¼ � f ;Gg
� �

(4)

for all functions f and g satisfying appropriate boundary conditions.
The method of multiple scales will be employed to solve Eq. (1) without discretization. A uniform

approximation is sought in the form

vðx; tÞ ¼ v0ðx;T0;T1Þ þ �v1ðx;T0;T1Þ þOð�2Þ, (5)

where T0 ¼ t, T1 ¼ et, and O(e2) denotes the term with the same order as e2 or higher. Substitution of Eq. (5)
into Eq. (1) yields

Mv0;T0T0
þ Gv0;T0

þ Kv0 ¼ 0, (6)

Mv1;T0T0
þ Gv1;T0

þ Kv1 ¼ N1ðx;T0;T1Þ, (7)

where N1(x,T0,T1) stands for a nonlinear function of x, T0 and T1, which usually depends explicitly on v0 and
its derivatives and integrals. In addition, N1(x,T0,T1) is periodic in T0 with the period 2p/o.
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Separation of variables leads to the solution of Eq. (6) as

v0ðx;T0;T1Þ ¼
X1
j¼1

AjðT1ÞjjðxÞ e
iojT0 þ cc, (8)

where Aj denotes a complex function to be determined later, jj and oj represents, respectively, the complex
modal function and the natural frequency defined by

�o2
j Mjj þ iojGjj þ Kjj ¼ 0 (9)

and the boundary conditions, and cc stands for the complex conjugate of all preceding terms on the right side
of an equation.

If o approaches a linear combination of natural frequencies of system (6), the summation parametric
response may occur. A detuning parameter s is introduced to quantify the deviation of o from the
combination, and o is described by

o ¼
X1
j¼1

cjoj þ �s, (10)

where cj are real constants that are not all zero and only a finite of them are not zero. To investigate the
summation parametric response, substitution of Eqs. (8) and (10) into Eq. (9) leads to

Mv1;T0T0
þ Gv1;T0

þ Kv1 ¼
X1
j¼1

Fjðx;T1Þ e
iojT0 þNSTþ cc, (11)

where Fj(x,T1) (j ¼ 1,2,y) are complex functions dependent explicitly on Aj (T1) and their temporal
derivatives as well as jj (x) and their spatial derivatives and integrals.
3. Solvability condition

To derive the solvability condition, assume that the solution of Eq. (11) take the following form:

v1ðx;T0;TÞ ¼
X1
j¼1

cjðx;T1Þ e
iojT0 þ uðx;T0;TÞ þ cc, (12)

where u(x,T0,T1) stands for all non-secular terms in the solution. According to Eq. (12), cj(x,T1) is with the
same boundary conditions as jj(x). Substitution of Eq. (12) into Eq. (11) and then equalization of coefficients
of eioj T0 in the resulting equation give

�o2
j Mcj þ iojGcj þ Kcj ¼ F jðx;T1Þ. (13)

Thus for the complex modal function jj(x),

F jðx;T1Þ;jj

D E
¼ �o2

j Mcj þ iojGcj þ Kcj ;jj

D E
. (14)

Application of the distribution law to Eq. (14) yields

Fjðx;T1Þ;jj

D E
¼ �o2

j Mcj ;jj

D E
þ ioj Gcj ;jj

D E
þ Kcj ;jj

D E
. (15)

Using Eqs. (3) and (4) and the distribution law, one obtains

F jðx;T1Þ;jj

D E
¼ cj ;�o

2
j Mjj þ iojGjj þ Kjj

D E
(16)

in which the following equation is employed:

c f ;Gg
� �

¼ f ; c̄Gg
� �

(17)
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for a complex constant c. Hence one concludes from Eq. (9) that

Fjðx;T1Þ;jj

D E
¼ 0. (18)

Eq. (18) is the solvability condition that requires the coefficient of eioj T0 in the right-hand side of the first-
order equation to be orthogonal to jth model function of the zero order equation.

It should be noticed that the solvability condition (18) holds providing the boundary conditions are
appropriate. That is, M and K are symmetric and G is skew symmetric under the boundary conditions. In a
specific problem, these requirements can be checked for a given operators, boundary conditions and the modal
functions. However, the examination depends only on the unperturbed linear part of the problem. Here an
example is presented to demonstrate the procedure.

4. An example

A uniform axially moving beam, with linear density rA, initial tension P0, and flexural rigidity EI, travels at
the constant mean axial speed g0 between two ends separated by distance l on an elastic foundation with
stiffness k under some small disturbances due to nonlinearity, viscoelasticity, and excitations such as
fluctuations in the axial speed or the string tension. At two ends, the axially moving beam is constrained by
simple supports with torsion springs.

In this case, mass, gyroscopic and stiffness operators are, respectively,

M ¼ rA; G ¼ 2rAg0
q
qx
; K ¼ ðrAg20 � P0Þ

q2

qx2
þ EI

q4

qx4
þ k. (19)

For complex modal functions jj of the corresponding linear problem and a complex function cj with the
same boundary conditions, the prescribed boundary conditions are:

jjð0Þ ¼ 0; jjðlÞ ¼ 0; cjð0Þ ¼ 0; cjðlÞ ¼ 0, (20)

j00j ð0Þ � k1j0jð0Þ ¼ 0; j00j ðlÞ � k2j0ðlÞ ¼ 0; c00j ð0Þ � k1c
0
jð0Þ ¼ 0; c00j ðlÞ � k2c

0
jðlÞ ¼ 0, (21)

where k1 and k2 are two constants. Application of Eq. (2) directly gives

Mcj ;jj

D E
¼ cj ;Mjj

D E
. (22)

Therefore, M is always symmetric regardless boundary conditions. Application of Eq. (2) and integration by
parts yield

Gcj ;jj

D E
¼ � cj ;Gjj

D E
þ 2rAg0ðcjj̄jÞ

��l
0
. (23)

Hence, G is skew symmetric for all motionless boundaries satisfying Eq. (20). Application of Eq. (2) and
integration by parts repeatedly lead to

Kcj ;jj

D E
¼ cj ;Kjj

D E
þ½ðrAg20 � P0Þðc

0
jj̄j � cjj̄

00
j Þ þ EIðc000j j̄j � c00j j̄

0
j þ c0jj̄

00
j � cjj̄

000
j Þ�

���l
0
. (24)

Thus, K is symmetric for ends with Eqs. (20) and (21).

5. Summary

The authors present the general framework of the application of the method of multiple scales to a weak
nonlinear gyroscopic continuous system without discretization. The solvability condition is proved as the
orthogonality of the coefficient of the resonant term in the first-order equation and the corresponding modal
function of the zero order equation. The correctness of the solvability condition depends on the
appropriateness of boundary conditions, which can be checked for the mass, gyroscopic and stiffness
operators in the zero order equation. An axially moving beam on an elastic foundation is treated as an
example to demonstrate the procedure of examining boundary conditions.
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[12] H.R. Öz, M. Pakdemirli, H. Boyaci, Non-linear vibration and stability of an axially moving beam with time dependent velocity,

International Journal of Non-Linear Mechanics 36 (2001) 107–115.

[13] L.Q. Chen, X.D. Yang, Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear

models, International Journal of Solids and Structures 42 (2005) 37–50.

[14] L.Q. Chen, X.D. Yang, Nonlinear free vibration of an axially moving beam: comparison of two models, Journal of Sound and

Vibration 299 (2007) 348–354.

[15] M. Pakdemirli, A.G. Ulsoy, Stability analysis of an axially accelerating string, Journal of Sound and Vibration 203 (1997) 815–832.
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